Sediment and Beneficial Reuse Commissioner Working Group

November 17, 2023

Chair: Andy Gunther Vice-chair: Pat Showalter Project Team: Maya McInerney, Brenda Goeden, Erik Buehmann, Pascale Sumoy, Jaime Lopez, Kathryn Riley

San Francisco Bay Conservation and Development Commission

San Francisco Bay Regional Sediment Management

Agenda

- 1. Welcome & Project Updates
- 2. Construction and Upland Soils as a Source of Sediment
 - Dave Halsing, South Bay Salt Ponds, SCC
 - Xavier Ferandez, San Francisco Bay Regional Water Board
- 3. Public Comments
- 4. Adjournment

Project Updates

Sediment for Wetland Adaptation Project

November 17, 2023

Sediment for Wetland Adaptation Project

Goal:

"Increase beneficial" reuse of sediment and soil for wetland habitat restoration, resilience, and sea level rise adaptation in the San Francisco Bay Area."

Project Objectives:

-Sediment to Wetlands Roadmap -Increased Collaboration -Possible Policy Changes -Financing Strategy

Beneficial Reuse for Green Infrastructure

Sediment & Soil

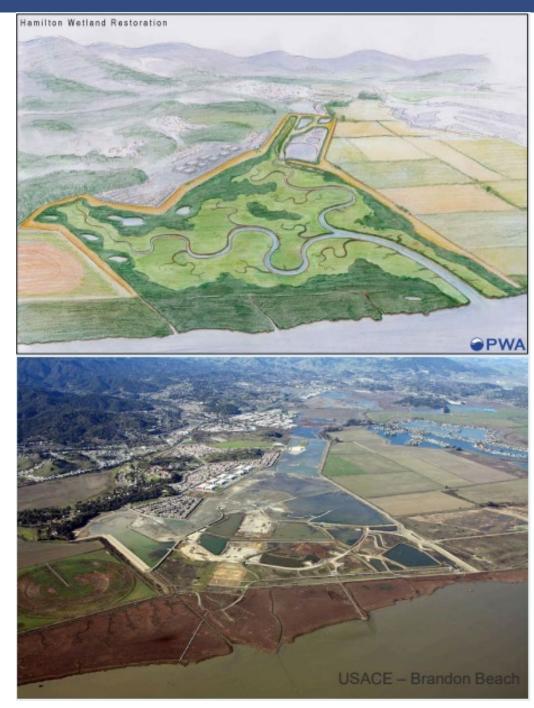
Dredging - navigation channels & flood protection channels Upper watersheds - reservoirs, disconnected creeks Excavated soils - construction

Three Project Phases

2023	2024	2025
<u>Phase 1</u> – Stakeholder Engagement • Sediment to Wetlands Roadmap • Coalition building	<u>Phase 2</u> – Potential Bay Plan Amendment	
	<u>Phase 3</u> – Financing Strategy	
Commissioner Working Group meetings		
Core Team meetings		
	STANCISCO PL	

Bay Sediment Transport System

- Sediment comes in through watersheds
- Movement within Bay through tributaries and tides
- Fine- and course-grained sediment transport
- Erodible sediment pool
- Human activities alter the system
- Less natural sediment supply


Sediment Supply to Bay Marshes

- Tidal marshes lost due to human activities
- Natural erosion driven by wind and waves
- Erosion depends on many factors (including location and edge type)
- High tides and storms deliver sediment
- Natural accretion rate not fast enough

Sediment Considerations for Beneficial Reuse in Restoration Projects

- Elevation to keep pace with sea level rise
- Space to migrate upland
- Sediment (supply is limited)
- Time
- Prioritization of efforts, resources, & projects

Sediment Challenges in Wetland Restoration Projects

- Sediment and soil sources: upland soils, nav. dredging, streambed maintenance, and coarse sediment
- Beneficial reuse project examples
- Need regulatory change, local support, and increased funding

Dredging as a Source of Sediment

- Importance of dredging the Bay
- Majority is disposed of as a waste (costs, wildlife concerns, and logistics)
- Success of Long Term Management Strategy

Flood Control Projects as Sources of Sediment

- Reconnect creeks and historic marshes
- Ecotone for resilient flood protection
- Use natural flow regime to deliver sediment to marshes
- Pilot projects provide useful information

Construction and Upland Soils as a Source of Sediment

Upcoming Meetings and Events

Workshop Plan

- Workshop will present a series of potential pathways to get more sediment to beneficial reuse.
- Areas of focus include:
 - Sources of sediment: dredging, flood management, construction
 - Placement of sediment: direct and indirect placement methods, restoration/adaptation sites
- Expected workshop outcomes:
 - 1. Confirmation of the implementation framework and objectives
 - 2. Identification of key opportunities and barriers for sediment and soil reuse
 - 3. A clear understanding of ideas and recommendations regarding action plans
 - 4. An outline of roles/responsibilities for implementation

Workshop Preparations

Working with our Facilitator

- Stakeholder interviews complete
- Workshop plan
- Workshop materials

BCDC Project Team

- Stakeholder outreach
- Send and track workshop invites
- Prep workshop materials (issue papers and results chain analysis outline)

Questions / Discussion

Maya McInerney Environmental Scientist maya.mcinerney@bcdc.ca.gov

Terrestrial Material Reuse in Restoration and SLR Adaptation

Presentation to BCDC Working Group on Sediment & Beneficial Reuse Xavier Fernandez, SF Bay Regional Water Quality Control Board Dave Halsing, South Bay Salt Pond Restoration Project November 17, 2023

Material Sources

- Dredging
- Upland excavation
- Stream maintenance

Material Sources

Dredging

Upland excavation

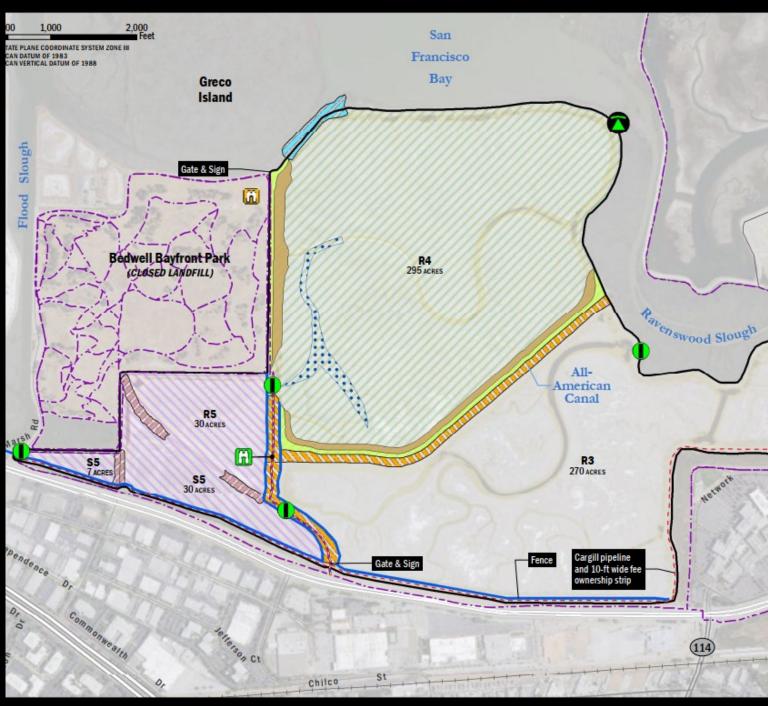
• Stream maintenance

Danger of Too Much Focus on One Piece of the Puzzle

- Plenty on long-term need and demand
 - e.g., Sediment for Survival
- Most focus on dredging
 - LTMS & DMMO; Bay Planning Coalition
- Ignores shorter-term problems and needs
 - Establish marshes before SLR accelerates
- Dredge material \rightarrow limited utility
 - Not good for levees, ecotones/horizontal levees, islands
- Urgent need is for "true dirt"
 - Marsh restoration, flood mgmt, and SLR adaptation projects
 - Large quantities needed NOW

Uses for Upland Material

- Raising / repairing old salt pond berms
 - Avoids tidal encroachment or unplanned failure

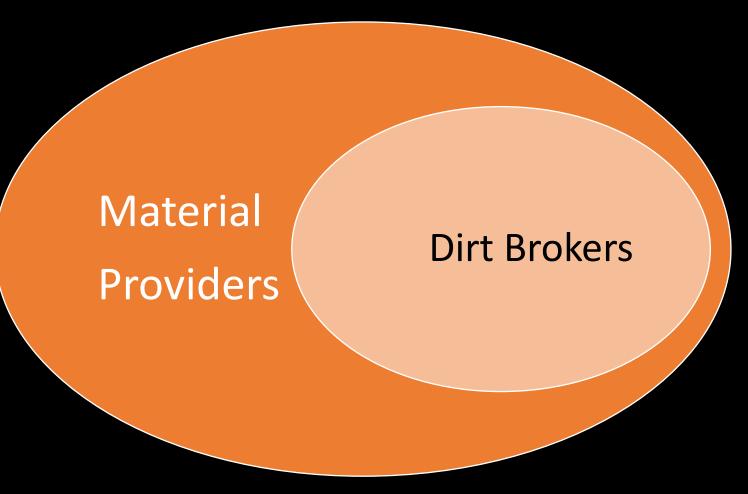


Uses for Upland Material

- Raising salt pond berms
 - Avoids tidal encroachment / unplanned failure
 - Allows safe reintroduction of tides for restoration

Uses for Upland Material

Raising salt pond berms


- Avoids tidal encroachment / unplanned failure
- Allows safe reintroduction of tides for restoration
- Habitat transition zones / Ecotones
 - More & better habitat
 - Flood management
 - SLR adaptation
- Habitat islands
 - Wave breaks
 - Loci of future sediment accretion
- SMP material can be too coarse still helpful

The 'Free Dirt Model' of Beneficial Reuse

Buying dirt is REALLY expensive (\$40-50/cy for ecotone; more for "levees")

Material Providers & Their Processes

- Not synonymous
- All bring their own material
- Dirt brokers bring theirs <u>and</u> others
- How they do what they do
- (Why they sometimes don't...)

Cleanliness and Environmental Safety

- QAPP and its history
 - Borrow site history
 - Env Screening Limits
 - Surface vs foundation standards
 - Requirements for sampling, testing, submitting for approval, tracking, reporting, etc.
 - Specific to each recipient site landowner
- Roles of source project owner, reuse site owner, material provider, QA Officer, etc.

Upsides

- Why it works
- Who's got incentives
- Benefits to env and society
 - Waste \rightarrow input good
 - Landfill use avoided
 - Overall costs reduced
 - Projects happen more cheaply & better
- Success stories examples

Challenges

- Construction industry has peaks & valleys
- Not all material is clean enough (more on this)
- Timing of excavation vs. project constraints
 - Hours of operation, traffic, seasonal work windows, wet weather
- Physical limitations
- Other projects in the way
- Hauling distances too large
- Imperfect source projects

Challenges

- Access to reuse sites not in our control
 - Cities often object to large #'s of trucks
 - Easements or local permits are **TOUGH**
- Testing labs not all equal data questions arise
- Duplicative review-and-approval processes
- Material providers don't want to share
 - Liability risk AND they like monopolies

Adds schedule and financial risk/uncertainty to projects More funding needed to replace lost grant \$ or to buy fill

We Sometimes Overcome

- 1 monopolistic dirt broker \rightarrow 5 competing material providers
- Advanced statistical analysis
 - UCL, Hazard Quotient Method, etc.
- Developing ideas for improving QAPP processes
 - Allow more material reuse while being appropriately protective
 - Conceptual site model to track exposure to biota
 - Material mixing to achieve balance across all criteria
 - Evaluate ESLs to be more about marsh species
 - Possible future changes in ecotoxicologic risk to biota

Will It Be Enough?

Not if we don't change some things

- Smaller/fewer ecotones → reduce material demand
- Alternatives to ecotones in some places
- Still: most SLR adaptation projects need fill

(And that's where the money is... ...Public support too)

 New approaches to testing & screening, approval, etc. could help

Still Limited

- Need for easements and local permits
 - Can 'veto' project implementation
- Better outreach could help but won't solve
- More policy changes are needed
 - Visions & strategies are not enough
 - Features are still fill and adverse impacts; permitting not easy; mitigation is often required
 - Short-term impacts/risks > long-term needs, benefits, and costs

Thank You

Xavier Fernandez xavier.Fernandez@waterboards.ca.gov

Dave Halsing dave.halsing@scc.ca.gov

