San Francisco International Airport Shoreline Protection Program

BCDC ECRB Meeting September 27, 2023

Agenda

- 1. Introduction & Project Purpose
- 2. Structural Analysis
- 3. Geotechnical Analysis
- 4. Adaptations for Sea-level Rise Flood Hazards
- 5. Questions

SPP Project Team

- SFO
 - Audrey Park
 - David Kim, PhD
- ESA
 - Bob Battalio, PE
 - Matt Brennan, PhD, PE
 - Melissa Denena
- COWI
 - James Connolly, PE, SE
 - Brian Lindawson, PE
 - Evan Vinyard

- TERRA engineers
 - Bob Kirby, PE, GE
 - John Lim, PE
- Geosyntec
 - Juan Pestana, ScD, PE

Existing Flood Hazard

Source: FEMA (2021)

Project Objectives

- 1. Protect travelers and workers, Airport operations, and City assets
- 2. Remove Airport from 100-year FEMA floodplain via C/LOMR
- 3. Create protection system that is adaptable to future projections of sea-level rise
- 4. Create protection system that poses no safety hazards to Airport operations, maintains runway capacity, and satisfies FAA design standards
- 5. Enhance emergency vehicle access near fuel tank farm
- 6. Minimize hazardous wildlife attractants to prevent bird strikes
- Create protection system as expeditiously as possible for safe and continuous Airport operations and minimizing disruption to aircraft operations during construction

The Airport acknowledges avoidance and minimization of impacts on the San Francisco Bay to the extent practicable.

Project Description

Remove:

- Existing shoreline protection: Concrete walls, sheet pile walls, concrete debris, armor rock, sandbags, K-rails, embankment walls/dikes, earthen and vegetated berms.
- Existing infrastructure in areas where it conflicts with the proposed shoreline protection system.

Construct New Shoreline Protection System:

- Reinforced concrete walls and steel sheet pile walls, some with armor rock revetments and/or open water fill.
 Approximately 40,335 feet (7.6 miles) long, 3.9 to 13.5 feet above existing or newly graded ground surfaces and driven to maximum depth of approximately 50 feet.
- New perimeter dike, for Reaches 7 and 8, extend shoreline protection system additional 100 to 215 feet beyond existing shoreline into Bay.
- Armor rock revetments used in tandem with walls to dissipate wave energy and prevent sediment scour.
- Open water fill intended to stabilize the shoreline and create a necessary slope for support of the shoreline protection system.
- Fill in wetlands in Sub-reach 2B and Reach 14 areas.

Project Description (continued)

Construct Associated Improvements:

- **Roads:** For Reaches 7–11, 13, and 14, vehicle service road relocated approximately 12 to 140 feet toward the Bay.
- Storm Drain Pump Station Outfalls/Water Utility Lines: Existing infrastructure retrofitted and rerouted.
- Lighting Trestle: To accommodate construction of perimeter dike and shoreline protection system for Reach 7 per FAA design standards, existing lighting trestle at end of Runway 19L to be demolished and new lighting trestle constructed.
- Gates: Floodgates and other access control gates would be installed in various areas associated with the shoreline protection system and/or roadways.

Agenda

- 1. Introduction & Project Purpose
- 2. <u>Structural Analysis</u>
 - COWI
 - James Connolly, PE, SE
 - Brian Lindawson, PE
 - Evan Vinyard
- 3. Geotechnical Analysis
- 4. Adaptations for Sea-level Rise Flood Hazards
- 5. Questions

Sea-Level Rise Protection Program: Plan View

SF(

Typical Cross Sections

Design Basis

Scope	Design Standard	Details
Floodwall Design Standard	USACE EM1110-2-2502 "Floodwalls and other Hydraulic Retaining Walls" DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers 441 G Street, NW Vashington, DC 20314-1000 Engineer Manual No. 1110-2-2502 1 August 2022 Engineering and Design FLOODWALLS AND OTHER HYDRAULIC RETAINING WALLS	 Define Non-seismic loads and combinations Wall limit states Non-seismic performance requirements
Seismic Performance Requirements	FEMA 543"Design Guide for Improving Critical Facility Safety from Flooding and High Winds"Winds"	INCREASING LEVEL OF PERFORMANCE Performance Groups Performance Groups Very Lorge Severe High Moderate Very Lorge Severe High Moderate Very Lorge Severe High Moderate Medium High Moderate Mid Medium High Moderate Mid Small (request) Moderate Mid Mid Small (request) Moderate High Moderate Mid Very Lorge 24/75 Years Batespecific Basis 1/25 Years Ionge Ionge (Income) Ionge (Income) Stasspecific Basis 1/25 Years Very Lorge Ion Stasspecific Basis Jon Years Jon Years Jon Years Very Lorge Ion Years Stasspecific Basis JON Years
	S FEMA	Small 25 Years 100 Years 50 Years

Load Combinations

Load Combo & Category	Nominal Load Case Description	Unfactored Load Combination
1	10-year Flood Event	D + EH + EV +
Usual	(including future SLR)	(Hs+Hw+Hd) _U + W
2 Unusual	FEMA 1% AEP Flood with SLR	D + EH + EV + (Hs+Hw+Hd) _N + W
3 Extreme	FEMA 1% AEP Flood with SLR and Debris Impact	D + EH + EV + (Hs+Hw+Hd) _N + IM + W
4 Extreme	750-year Flood Event	D + EH + EV + (Hs+Hw+Hd) _x + W
5A Unusual	Seismic – 72-year Event	D + EH + EV + Hs _c + EQ _{N-72}
5B Unusual	Seismic – 475-year Event	D + EH + EV + Hs _c + EQ _{N-475}

<u>Symbols</u>

• D – Dead

- EV Vertical Earth Pressure
- EH Lateral Earth Pressure
- Hs Hydrostatic
- ES Soil Surcharge
- L Live Load
- Hw Wave Loading
- Hd Hydrodynamic (not seismic) Load
- IM Debris/Floating Ice Impact
- W Wind
- EQ Earthquake (Inertial + Kinematic)
- Subscripts _U, _N, and _x for Usual, Unusual, and Extreme load categories, respectively.
- Subscripts pr and c designate principal and companion loads, respectively.

Seismic Loading

Seismic Hazard

- Peak Ground Acceleration
 - 72 years 0.13 g
 - 475 years 0.37 g

Performance Criteria

- FEMA 453 Guidelines
- 72 years "Mild"
 - No structural damage
 - Overall extent of damage is minimal
- 475 years "Moderate"
 - Damage is repairable and some delay in re-occupancy expected
 - Extent of damage can be locally significant, but moderate overall

Wave Loading

Basis

USACE EM 2502 General Loading Criteria

- Usual 10 years
- Unusual 100 years
- Extreme 750 years

SFO SPP Wave Loading Analysis

- Condition Input Parameters
 - Surge
 - Wave
- Return Periods
 - 1, 2, 5, 10, 50, 100, 375, 750 years
- Envelope of Combined Surge and Wave Events to Determine Worst Case
 - 10-yr event
 - 100-yr event
 - 750-yr event

Technical Approach

Goda (1974) - Wave Distribution Diagrams

Load Diagrams

16 **SFC**

Analysis Approach

54 [36	Оже	(slope)
54 36	СМР	
36	Division in the second	
	and the second second	DWe H
50	- Carlos	
50	- Alexandre	STREET
	BACKFILL	EXCAVATION
l unit.	SIDE	U SIDE
pliers	CASE 1	CASE 2 CASE
^2) 0		1)1 18
0	- Wa wp v	Wa Wp
1	PLAN	VIEWS
	50 50 auxit. ppiers 2) 0 0 1 1 	50 BACKFILL side side side side side side side side

SHEET PILES

Non-Seismic

- **PYWall Analysis** •
- Model Corroded Properties •

Seismic

Demand From Geotechnical Analysis

- Inertial Plaxis2D
- Liquefaction Zhang et al

- **Rotational Stability** (embedment)
- Strength of Elements
- Deflection

- Sliding

- Strength of Elements
- Resultant Location (overturning)
- **Bearing Capacity**

Design Results

Sheet Pile	CIP T-Wall			
Applicable Reaches	Applicable Reaches			
• 2 – 14, inclusive	• 1 and 15			
Reference Section				
• NZ19 or AZ19-700	Design Details			
Grade 60	Conventionally Reinforced Concrete			
Tip Elevation	Includes Shear Key			
 Min 10 ft Embedment Into Young Bay Mud 	Includes Cement Bentonite Hydraulic Cutoffs			
 Min -35 ft NAVD88 				
(N) SHEET PILE WALL WITH CAP (TOP EL +19.5) TO TREATMENT PLANT (N) 28-FT WIDE FIRE ROAD (N) 28-FT WIDE FIRE ROAD (N) STEEL SHEET PILE (N) STEEL SHEET PILE TOP OF YOUNG BAY MUD (B) STEEL SHEET PILE (N) STEEL SHEET SH	REMOVE (E) FENCE AND REPLACE WITH (N) AGA FENCE TO ARFIELD/ CNG FUEL STATION (N) REINFORCED CONCRETE WALL (TOP EL +16.0) REMOVE AND REPLACE PAVING (N) WATERSTOP (N) WATERSTOP			

Analytical Results

Sheet Pile	CIP T-Wall		
Strength of Structural Elements (checked with corroded section properties) Flexure Max Demand/Capacity (D/C) = 0.74 Shear Max D/C = 0.08 Rotational Stability (embedment)	Strength of Structural ElementsSliding Stability • D/C = 0.15Wall thicknesses provide ample section depth for reinforcing• D/C = 0.15Wall thicknesses provide ample section depth for reinforcing• Within allowable 		
• Max D/C = 0.90	• D/C = 0.61	Bearing CapacityFS = 3.5	
 <u>Key Conclusions:</u> Flood Loading – No Damage Seismic Inertial – No Damage 			

Coastal Hydraulics – Technical Approach

Approach

- Based on Central San Francisco Bay Flood Hazard Study (BakerAECOM, 2012)
- Previous approach improved upon and applied to shoreline with SFO SPP structures, to support FEMA map revision via C/LOMR process

Primary Data Source

- San Francisco Bay Regional-Scale Wave and Hydrodynamic Modeling (DHI, 2011)
- 31-year hindcast model providing hourly wave and surge time series

Passpoints along SFO Shoreline where surge and wave time series data are available

Coastal Hydraulics – Methodology

Wave Transformation

- Waves transformed from passpoint to shoreline
- Filtering, refraction, breaking, etc.

Wave Runup

Height of runup on SPP structures

Extreme Statistics

 Process results from 31-year time series to generate 100-year surge and wave conditions

21

Coastal Hydraulics – Flood Water Levels & Top of Wall

Total Water Level (TWL)

- 1% Still Water Elevation (SWEL)
- Wave Runup (Rmax)
- Sea Level Rise (SLR) = 42" (3.5 ft)

Top of Wall (T/Wall)

- TWL or SWEL
- Additional Freeboard Allowance
- Confirm Against FEMA Base Flood Elevations (BFE)

SLR Adaptation

Potential for Future T/Wall Raise

					COWI
			1% TWL	COWI Design	Proposed
		1% SWEL +	(Rmax) +	Elevation	Design
Reach ID	FEMA BFE	2ft Freeboard	1ft Freeboard	Indicator	Elevation
1	10	15.8	NA	15.8	16
2a	13	15.8	15.3	15.8	16
2b	14	15.8	19.3	19.3	19.5
2c	11	15.8	15.9	15.9	16
3	11	15.8	15.6	15.8	16
4	11	15.8	15.6	15.8	16
5	10	15.8	17.0	17.0	17
6	10	15.8	15.4	15.8	17
7a	11	15.8	16.8	16.8	20.2
7b	11	15.8	17.4	17.4	20.2
7c	11	15.8	17.3	17.3	20.2
8	11	15.8	17.3	17.3	17.5
9	11	15.8	16.5	16.5	17
10	11	15.8	16.6	16.6	17
11	11	15.8	17.1	17.1	17
12	12	15.8	17.3	17.3	17
13	10	15.8	15.2	15.8	17
14	12	15.8	18.0	18.0	18
15	10	15.8	NA	15.8	16

all elevation values in ft NAVD88

Coastal Hydraulics – Riprap Design

Methodology

- Caltrans Highway Design Manual
- Caltrans Bank and Shore Rock Slope Protection Design Guide

Design Conditions

- 100-year wave
- Significant Wave Height: 3.0 ft
- Mean Wave Period: 3.5 s

<u>Results</u>

- Size: RSP Class IV
- Minimum Thickness: 2.5 ft
- Geotextile Layer: RSP-Fabric Class 8

Riprap Design Parameter	Value
Riprap Class	RSP Class IV
Median Stone Size	15 in
D ₁₀₀	30 in
D ₅₀	15 in
Median Stone Weight	300 lb
Minimum Riprap Layer Thickness	2.5 ft
Toe Thickness	5.0 ft
Backing Layer	None
Geotextile Layer	RSP-Fabric Class 8

Agenda

- 1. Introduction & Project Purpose
- 2. Structural Analysis
- 3. Geotechnical Analysis
 - TERRA engineers
 - Bob Kirby, PE, GE
 - John Lim, PE
 - Geosyntec
 - Juan Pestana, ScD, PE
- 4. Adaptations for Sea-level Rise Flood Hazards
- 5. Questions

Geotechnical Analysis

- Subsurface Conditions
- Site Seismicity and Site Response Analyses
- Seismic Performance of SPP
- Geotechnical Design of SPP

Fill of Historic Shoreline

26 **SFO**

Typical Subsurface Profile

SFC

Site Seismicity and Site Response

- 475-year return period design earthquake
- Probabilistic Seismic Hazard Assessment (PSHA) used to develop hazard curve for design earthquake
- Controlling earthquake is San Andreas event with Mw 7.8 at 5.6 km
- PEER time history database screened to select seven time histories for dynamic analyses
- Four of seven time histories included pulse characteristics

Summary of Selected Time Histories and Scaling Factor

RSN	Earthquake	Pulse Period (sec)	Magnitude. (Mw)	R _{RUP} (km)	Fault Type	V _{\$30} (m/s)	D ₅₋₉₅ (sec)	Azimuth (°)	Initial Scale Factor	Ia (m/s)	PGA (g)	PGV (cm)
143	Tabas, Iran	6.2	7.35	2.05	Reverse	767	16.6	110	0.38	2.1	0.31	48.6
879	Landers	5.1	7.28	2.19	Strike-Slip	1369	13.5	91	0.46	1.5	0.33	60.9
1148	Kocaeli, Turkey	7.8	7.51	13.5	Strike-Slip	523	9.8	122	2.31	1.4	0.43	75.3
1511	Chi-Chi, Taiwan	4.7	7.62	2.74	Reverse Oblique	615	29.1	86	0.93	3.1	0.33	51.3
1521	Chi-Chi, Taiwan	-	7.62	9	Reverse Oblique	672	27.7	156	1.22	2.7	0.36	18.3
1633	Manjil, Iran	-	7.37	12.6	Strike-Slip	724	31.3	185	0.57	2.9	0.32	16.4
5618	Iwate, Japan	-	6.9	16.3	Reverse	826	26.7	69	1.11	1.7	0.36	17.3
									Average	2.2	0.35	41.1

Response of Scaled Time Histories Compared to Target Spectrum

SFO

Site Response Analysis (Reach 6)

Seismic Performance of SPP

- 2D Plaxis analysis Reaches 6 and 7
- Liquefaction-induced lateral displacements
- Evaluation of combined performance of SPP

Plaxis 2D Finite Element Mesh (Reach 6)

SF(

Typical Lateral Displacements (Reach 6)

Plaxis 2D Finite Element Mesh (Reach 7)

Typical Lateral Displacements (Reach 7)

39 **S**

SFO

Maximum Bending Moments Developed During Shaking (kip-ft)

Sheet Pile Wall Moment Demand Envelope

Maximum Bending Moments Developed During Shaking (kip-ft)

Liquefaction-Induced Lateral Displacements

- Based on semi-empirical procedure developed by Zhang et al. (2004)
- Factor of Safety (FS) against liquefaction and relative density from CPT data using methodology by Boulanger and Idriss (2015) used to estimate maximum cyclic shear strains
- Peak ground acceleration (PGA) based on Site Response Analysis for Reach 6
- Evaluation of performance based on a conservative assumption regarding side-slope of shoreline fill

CPT Locations for Liquefaction Study

42 **SFO**

Lateral Displacement Distribution

Calculated LD at Each CPT (ft)

43 **SFC**

Lateral Displacements Along Shoreline

SFO

Combined Performance of Sheet Piles Floodwalls

- Plaxis analysis Max sheet pile Stress 27% of Allowable Stress
- Rotation at top of YBM proportional to displacement within fill of 0.4 feet
- Median value of liquefaction-induced displacement (LD) is 0.5 feet
- For 0.9 feet of combined displacement sheet pile stress increases to 60% of allowable stress
- For LD of 1 foot, max sheet pile stress increases to 95% of allowable stress -continued-

Combined Performance of Sheet Piles Floodwalls

- LD controlled by local *average* value of LD from local CPT data
- Need to complete closely spaced CPTs to delineate areas with LD > 1 foot
- LD > 1 foot may require ground improvement within fill to meet moderate damage performance criteria
- Z-type sheet piles can accommodate elongation strains due to differential lateral movement along wall alignment by joint rotation at interlocks

Fill Placement and Ground Stabilization at Reach 7

Lateral expansion of Airport at Reach 7 via in-Bay fill will require ...

- Dredging and construction of perimeter dike
- Filling of area behind the perimeter dike
- Installation of wick drains to reduce time required for settlement of YBM below the fill
- Placement and removal of a temporary preload fill to reduce future settlement
- Deep compaction of fill and perimeter dike to mitigate liquefaction potential
- Installation of sheet pile floodwall

Conceptual Design (Reach 7)

Conceptual Cross Sections (Reach 7)

S

Agenda

- 1. Introduction & Project Purpose
- 2. Structural Analysis
- 3. Geotechnical Analysis

4. Adaptations for Sea-level Rise Flood Hazards

- ESA
 - Bob Battalio, PE
 - Matt Brennan, PhD, PE
- 5. Questions

Sea-Level Rise Projections and Flood Hazard

100-Year Flood Inundation with 3.5-Foot SLR

Crest Elevations and Total Water Levels with +3.5-Foot SLR

Reach ID	Reach Name	Proposed Design Elevation (ft NAVD88)	SWL (ft NAVD88)	SWL Freeboard (ft)	TWL (ft NAVD88)	TWL Freeboard (ft)
1	San Bruno Channel	16	13.8	2.2	13.8	2.2
2a	Treatment Plant	16	13.8	2.2	14.3	1.8
2b	Treatment Plant	19.5	13.8	5.7	18.3	2.5
2c	Treatment Plant	16	13.8	2.2	14.9	1.4
3	Sea Plane Harbor 1	16	13.8	2.2	14.6	1.6
4	Coast Guard	16	13.8	2.2	14.6	1.6
5	Sea Plane Harbor 2	17	13.8	3.2	16.0	1.5
6	Superbay	17	13.8	3.2	14.4	2.7
7a	19 End	20.2	13.8	6.4	15.8	4.9
7b	19 End	20.2	13.8	6.4	16.4	4.4
7c	19 End	20.2	13.8	6.4	16.3	4.5
8	19 Edge	17.5	13.8	3.7	16.3	1.8
9	Intersection 1	17	13.8	3.2	15.5	1.9
10	Intersection 2	17	13.8	3.2	15.6	1.8
11	28R	17	13.8	3.2	16.1	1.4
12	28 End	17	13.8	3.2	16.3	1.3
13	28L	17	13.8	3.2	14.2	2.9
14	Mudflat	18	13.8	4.2	17.0	3.0
15	Millbrae Channel	16	13.8	2.2	13.8	2.2

Adaptation to Future Sea-Level Rise

	Projected I	Decade to Occur	Proposed 2030 Desig	gn Elevations versus:	
Sea-Level Rise (ft)	Low-Risk- Aversion Scenario	Medium-High- Risk-Aversion Scenario	Future 1% SWL	Future 1% TWL	Implications
3.5	2100	2070	At least 2 feet freeboard for all reaches	At least 1 foot freeboard for all reaches	Meets FEMA accreditation, as per design criteria
4.5	2130	2080	At least 1 foot freeboard for all reaches	Within few tenths of a foot of design elevation along multiple reaches	Does not meet freeboard requirements for FEMA accreditation Potential for minimal wave overtopping
5.5	2140	2090	Freeboard about zero for most reaches	Negative freeboard of about 1 foot for most reaches	Potential wave overtopping, which could be managed by the interior drainage system
6.9	After 2150	2100	Negative freeboard of about 1 foot for most reaches	Negative freeboard of about 2 feet for most reaches	Structural modifications needed before this amount of sea-level rise

Reach 16: Airport Landside Protection (if needed)

Reach 1 – Riverine Flood Hazard

Critical Area 1:

- Spill east of US101 driven by riverine flooding and coastal surge
- Water enters north of the long-term parking deck

Critical Area 2:

- Spill west of US101 driven mainly by riverine flooding
- Waters cross US101 and link with flood from SFO Long-Term Parking

Source: Lotus Water

Reach 15 – Riverine Flood Hazard

CRITICAL AREA 3

Millbrae Canal North Floodwall – Reach 15

- Floodwall prevents flooding on SFO property
- Floodwall has no Impact to Neighbors
 - 1-3" increase in BFE between Old Bayshore Hwy and US101 is due to separate riverine modeling
- Tides control BFE and riverine spill has no impact on BFE

Groundwater Depths

Source: May et al. (2022)

Groundwater Level Monitoring

1

Scale: 1000 ft _

A

Control of Seepage and Groundwater Levels

- Piezometer data indicate current groundwater levels are generally at Mean Sea Level
- Groundwater levels can be higher or lower locally in ponded areas or areas where buried storm sewers may be leaking
- Sheet piles extend 10 feet into YBM and reduce seepage through the fill to or from the Bay
- Groundwater levels will rise as sea level rises unless engineering controls such as French drains are installed inboard of the sheet pile floodwall
- The sheet piles will substantially reduce the volume of water that the French drains would collect
- Groundwater collected by the French drains will be piped to buried sumps and pumped to the Bay
- Design and timing of the groundwater control system is under study

Questions?

David Kim Senior Environmental Planner David.T.Kim@flysfo.com 650.821.1426

Audrey Park Environmental Affairs Manager Audrey.Park@flysfo.com 650.821.7844