Sediment and Beneficial Reuse Commissioner Working Group

July 21, 2023

Project Team: Maya McInerney, Brenda Goeden, Erik Buehmann, Pascale Sumoy, Jaime Lopez, Kathryn Riley

San Francisco Bay Conservation and Development Commission

San Francisco Bay Regional Sediment Management

Agenda

- 1. Welcome and Project Updates
- 2. Considerations for Beneficial Reuse of Sediment in Wetland Restoration Projects
- 3. Sediment Challenges in Bay Area Restoration Projects
- 4. Public Comments
- 5. Adjournment

bed RM Sediment for Wetland **Adaptation Project** Goal: To increase beneficial reuse of sediment

reuse of sediment and soil for wetland habitat restoration, resilience, and sea level rise adaptation in the SF Bay Area.

3

Beneficial Reuse for Green Infrastructure

Dredging - navigation channels & flood protection channels Upper watersheds - reservoirs, disconnected creeks Excavated soils - construction

Where have we come from?

- Fill for Habitat Bay Plan Amendment (BPA 1-17)
- Working Group Meeting Presentations

January

- Sediment and Soil in SF Bay Region
- Existing related Bay Plan Policies Affecting Beneficial Reuse

March

- Bay Plan Amendment Process
- Project Direction and Goals

May

- Sediment Transport in SF Bay
- Tidal Marsh Sediment Supply and Transport

Where are we going?

Considerations for Beneficial Reuse of Sediment in Wetland Projects

Sediment Challenges in Bay Area Restoration Projects

Beneficial Reuse of Soil

Costs and Financing of Beneficial Reuse

Beneficial Reuse of Dredged Sediment

Flood Control Project as a Source of Sediment

Stakeholder Workshop

Stakeholder Workshop

Goals & Objectives

- Identify roles, responsibilities, and actions
- Create a strategic roadmap

Preparations

- Onboarding our facilitator
- Stakeholder outreach
- Issue papers on relevant topics

Issue Paper Topics

- 1. Overview of wetlands restoration and adaptation
- 2. Sources of sediment and soil
- 3. Sediment placement methods
- 4. Challenged sediment
- 5. Prioritizing sediment and soil use
- 6. Current funding overview

Questions / Discussion

Photo: Hamilton Wetlands

Considerations for Beneficial Reuse of Sediment in Wetland Restoration Projects

The second se

BCDC Sediment & Beneficial Reuse Commissioner Working Group Meeting, July 21, 2023

Jeremy Lowe, San Francisco Estuary Institute

Objectives

 Present a regional perspective on wetland restoration and beneficial reuse of sediment and soils and provide thoughts on how to prioritize this work.

 Offer thoughts on landscape-scale restoration, the limited sediment and soil supply, and how we might best capitalize on this limited resource in meaningful actions over time.

www.sfei.org/projects/baylandsgoals

Wildlife Support

- Connectivity within the marsh (upland to subtidal)
- Connectivity among marshes
- Diversity/complexity of channel networks
- Topographic complexity
- Diversity/complexity of salinity patterns
- Redundancy
- Spatial scale
- Time scale

Flood Reduction

width and elevation of mudflat

Subembayment

SFE

- The build-up of sediment and vegetation takes time.
- Higher marshes keep up with sea-level rise for longer.

- Landward limit of marsh set by tidal limit (white dotted line).
- Upland next to marsh is often farmed or developed.

- Marsh migrates inland as sealevel rises (white dashed line).
- Levees constructed to protect developed areas.

- Colors indicate elevation. Green is marsh elevation. Yellow, orange and brown are mudflat and shallow Bay.
- The diked baylands are lower than the marshes in front. Note Hamilton fill.

Wetlands need...

- Elevation
- Space
- Sediment

SFEI

• Time

Present and Future Marshes

Distribution of existing tidal and diked marshes, planned and in progress restoration projects, and potential restoration opportunities.

Future Sediment

- Red highest potential for long term resilience with respect to vertical accretion
- Orange higher potential for long-term resilience with additional beneficial use of sediment

Placing sediment to increase resilience

	Wildlife support	Flood attenuation
Existing marshes and mudflats	Example: adding marsh mounds or islands for high tide refuge to existing marsh (e.g. Pond SF2)	Example: strategic or thin layer placement to maintain marsh plain (e.g. Bothin Marsh)
Diked baylands (potential future marshes and mudflats)	Example: placing sediment at transition zone elevation prior to breach (e.g. Pond A8)	Example: direct placement to restore marsh (e.g. Sonoma Baylands)

Questions to Ask

1. What are we trying to achieve?

- What are the restoration opportunities?
- What is the hazard, what is at risk, and how valuable is it?
- 2. Where do marshes, beaches, reefs, etc make sense in the future?
- What is appropriate to the natural setting? What is the elevation?
- How much space do you have? What is in front, behind, and to the sides?
- 3. How effective, how expensive, and how long will it last?
- How do you prioritize the use of resources?
- How do natural features combine with traditional levee approaches?

Natural and Nature -Based Features

Hamilton Airfield Marsh Restoration

Upland

Wetland-Upland Transition

Ecotone Levee

Alviso, South Bay Traditional Levee 3:1 (V:H)

Sears Point, North Bay Ecotone Levee 10:1 to 20:1 (V:H)

Sonoma Creek Baylands Strategy

- Support acquisition and design of restorations
- Recommendations for infrastructure
- Goals:
 - Habitat: Mixes of subtidal, tidal, freshwater, transitional, and upland habitats
 - Planning Horizon: 100 years (2100) assuming sea level rise up to 6.9ft
 - Urgency: Implement early more likely to succeed
 - Cost: Consider whole-life

"Integrate, Not Mitigate"

- 1. Present bridge crossings and embankments disrupt hydrologic and habitat connectivity.
- 2. Habitat restoration can help manage extreme flows.
- **3. Road and rail need to be raised** to accommodate sea-level rise and modified to increase connectivity.
- 4. Bridges need to be lengthened to accommodate future flows.

Natural and Nature -Based Features ...<u>and Processes</u>

Methods of placement to consider

Direct placement

- Hydraulic pipeline
- Trucking

Methods of placement to consider

Direct placement

- Hydraulic pipeline
- Trucking

Strategic placement

- Shallow-water placement
- Water-column seeding
- Marsh spraying

Thin-Layer Placement

Spraying at Seal Beach, CA

Alluvial Fan at Sonoma Baylands

Reconnecting Creeks to Marshes

SFEI

Adaptation Pathways

Conceptual phasing of measures triggered by sea-level rise, rather than a chronological timeline (adapted from Goals Project 2015).

Cost

- 1. Fill to change elevation usually represents the largest impact and most costly part of any restoration project.
- 2. Moving fill around is large cost and highest potential impacts to the environment.
- **3. Fill may be in short supply** and thus a finite resource.
- 4. Competition for resources between projects responding simultaneously to sea-level rise.

Question to ponder

We have limited elevation, space, sediment, time, and resources for restoration and adaptation. What should guide the prioritization of our efforts?

California Sea-Level Rise Guidance

opc.ca.gov

BCDC Flood Explorer explorer.adaptingtorisingtides.org

Jeremy Lowe JeremyL@sfei.org San Francisco Estuary Institute

SAN FRANCISCO BAY SHORELINE Adaptation Atlas

Working with Nature to Plan for Sea Level Rise Using Operational Landscape Units

Baylands ^{AND} Climate Change

WHAT WE CAN DO BAYLANDS ECOSYSTEM HABITAT GOAL SCIENCE UPDATE 2015

Habitat Goals Update baylandsgoals.org

> Adaptation Atlas sfei.org/adaptationatlas

Sediment Challenges in Bay Area Restoration Projects

Evyan Borgnis Sloane Deputy Bay Program Manager

Outline

Glossary of Terms Ι. Sediment & Soils Sources 11. III. Excavated Upland Soils I. Direct Placement II. Ecotone levees III. Levee repair/maintenance **IV. Dredged Sediment** I. Direct Placement II. Strategic Placement III. Thin Lift IV. Water Column Seeding V. Stream Maintenance Material **VI.** Course Sediment

Transition Zone Terminology

Sediment for Survival

I I 0 MT of sediment needed for inprogress and planned wetland restoration projects

Dusterhoff, S.; McKnight, K.; Grenier, L.; Kauffman, N. 2021. Sediment for Survival: A Strategy for the Resilience of Bay Wetlands in the Lower San Francisco Estuary. SFEI Contribution No. 1015. San Francisco Estuary Institute: Richmond, CA.

Sediment & Soils Sources

Excavated Upland Soils

Dredged Material —

Photos: Dave Halsing, Dredging Contractors of America, & Valley Water

Excavated Upland Soils – Ecotone Levees

- South Bay Salt Pond Restoration Project
- Shoreline Phase 1
- A4 Resilient Habitat
- SAFER Bay
- Bel Marin Keys

HORIZONTAL LEVEE water quality improvement, wave attenuation, wildlife habitat

FLOOD RISK MANAGEMENT LEVER

reduced flood risk, recreation

TIDAL MARSH water quality improvement, wave attenuation, wildlife habitat, carbon sequestration, food web productivity

Wave attenuation, wildlife habitat, food web productivity

SFEI Adaptation Atlas 2021

- South Bay Salt Pond Restoration Project ecotone levees
 - A8 ~200 thousand cubic yards (kCY)
 - R4 one done (~90 kCY) & one almost done (~100 kCY)

A2W – 100 kCY
A1 – needs 100 kCY

• Eden Landing South – 500 kCY at a minimum

- Levee improvements and/or repair needed for almost every project
- SBSPRP Phase 2 needed over 1 million CY for all levee repairs

- Direct Placement to raise elevations of subsided former wetlands prior to breaching
 - Bair Island I million CY of upland soils at Inner Bair
 - VTA 3.5 million CY of "tunnel muck" to be placed at South Bay ponds

Excavated Upland Soils - Challenges

- Limited clean dirt supply
- Regulatory
- Agreements with a sole soil provider
- Site constraints
 - Access routes
 - Local govt approvals
 - Adjacent infrastructure Construction windows
- Funding

Dredged Sediments

Direct Placement

- Muzzi Marsh
- Sonoma Baylands –
 3.2 million CY
- Hamilton Wetlands
 5.9 million CY

Hamilton Wetlands, ESA

Dredged Sediments

Direct Placement Cullinan Ranch – 3 million CY accepted; needs I million CY more Montezuma Wetlands – 9 million CY accepted todate; needs 15-20 million CY more • Bel Marin Keys Unit V – up to 14 million CY

Montezuma Wetlands Phase 1

Cullinan Ranch, Dutra Group

Dredged Sediments

- Direct Placement in tidal waters Tiscornia Marsh
 ~17 kCY sediment needed
 - STORIC MARSI EDGE-0

ESA – Preliminary Restoration Plan

Direct Placement of Dredged Sediments Challenges

- Cost
- Restoration Site Conditions
- Unexpected climate events
- Equipment
- Regulations

Dredging Today

Dusterhoff, et al. 2021. <u>Sediment</u> for Survival: A <u>Strategy for the</u> <u>Resilience of Bay</u> <u>Wetlands in the</u> <u>Lower San</u> Francisco Estuary.

Strategic Placement – Eden Landing

Thin-lift Projects

- Tidal wetlands naturally adapted to sedimentation
 One pilot to-date in a tidally influenced marsh
 - Seal Beach Sediment
 Augmentation Project

China Camp, Roger Levanthal

Seal Beach NWR, USFWS

Thin-lift Pilots

- Deer Island Basin
- 2016 and 2020
- Re-slurried sediments brought in by truck
- Monitoring

Methods

- Concrete pump
 - Slow & costly
 - Hard to slurry enough to be pumpable
 - Flinging
 - Slow
 - Doesn't require mixing
 - Hard to control
- Mud Ponds
 - Requires most space
 - Mimics nature best

Roger Levanthal, 2017

Thin-lift Pilot at NERRs Nationwide

- Study as 8 NERR sites over 3 years (Raposa et al. 2023)
- Vegetation rebounded even up to 14 cm thicknesses
 - Created a document recommending thin layer placement and design considerations

Guidance doc: <u>https://www.nerra.org/wp-content/uploads/2020/02/TLP-</u> Guidance-for-Thin-Layer-Placement-20200217-HRes.pdf

Raposa 2023: <u>https://www.nerra.org/wp-content/uploads/2023/01/Raposa-2023-coordinated-sediment-addition-experiment-across-NERRS.pdf</u>

New Thin-lift Planning

- Deer Island 20,000 cy in 2024/2025
- McInnis Marsh 50,000 100,000 cy from Gallinas creek
- Bothin Marsh Evolving Shorelines

McInnis Marsh, Marin County

Bothin Marsh, Marin County

Seal Beach NWR, SCC

Thin Lift Challenges

- Methodologies untested
- Costly
- Regulatory
 - Future wetlands considered habitat conversion or fill
 - Temporary impacts to species

Water Column Seeding

- USACE analyzing potential sites as a part of their Regional Dredged Material Management Plan
- Challenges
 - Unprecedented
 - Equipment
 - Site conditions
 - Species tradeoffs

Stream Maintenance Material

- Deer Island Basin thin-lift
- A8 ecotone
 - Small portion came from Valley Water's stream maintenance – 10-20K CY over 5-10 years
 - Most came from Enviromend

Pond A8, Dave Halsing

Stream Maintenance Material Challenges

- Lots of opportunities Flood Control Districts around the Bay
- Regulatory
 - Cleanliness standards
 - Terrestrial in origin, but in aquatic environment

Coarse Sediment

- Bay beaches provide many habitat and physical benefits
 - Aramburu Island

•

- Eden Landing South Pilot Gravel Beach
- Greenwood Gravel Beach
- Tiscornia Marsh

Richardson Bay Audubon

Aramburu Island 2016 monitoring report
Coarse Sediment Challenges

- Source material
 - Sand is expensive (\$25/CY)
- Species tradeoffs

Closing Thoughts

- Sediment/soil is a critical resource of nature-based adaptation on the shoreline
- Not only dredged sediment upland soils needed! There are MANY projects actively in-need and pursuing sediment/soil
- There may not be enough without regulatory changes, local support, and increased funding
- Sediment/soil needs to be brought in faster

Thank you!

Evyan Borgnis Sloane Deputy Bay Program Manager Evyan.sloane@scc.ca.gov

